Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a novel approach for the computational modeling of lignified tissues, such as those found in tree branches and timber. We leverage a stateof the-art strand-based representation for tree form, which we extend to describe biophysical processes at short and long time scales. Simulations at short time scales enable us to model different breaking patterns due to branch bending, twisting, and breaking. On long timescales, our method enables the simulation of realistic branch shapes under the influence of plausible biophysical processes, such as the development of compression and tension wood. We specifically focus on computationally fast simulations of woody material, enabling the interactive exploration of branches and wood breaking. By leveraging Cosserat rod physics, our method enables the generation of a wide variety of breaking patterns. We showcase the capabilities of our method by performing and visualizing numerous experiments.more » « lessFree, publicly-accessible full text available July 26, 2026
-
Differences in canopy architecture play a role in determining both the light and water use efficiency. Canopy architecture is determined by several component traits, including leaf length, width, number, angle, and phyllotaxy. Phyllotaxy may be among the most difficult of the leaf canopy traits to measure accurately across large numbers of individual plants. As a result, in simulations of the leaf canopies of grain crops such as maize and sorghum, this trait is frequently approximated as alternating 180 angles between sequential leaves. We explore the feasibility of extracting direct measurements of the phyllotaxy of sequential leaves from 3D reconstructions of individual sorghum plants generated from 2D calibrated images and test the assumption of consistently alternating phyllotaxy across a diverse set of sorghum genotypes. Using a voxel-carving-based approach, we generate 3D reconstructions from multiple calibrated 2D images of 366 sorghum plants representing 236 sorghum genotypes from the sorghum association panel. The correlation between automated and manual measurements of phyllotaxy is only modestly lower than the correlation between manual measurements of phyllotaxy generated by two different individuals. Automated phyllotaxy measurements exhibited a repeatability of R2 ¼ 0.41 across imaging timepoints separated by a period of two days. A resampling based genome wide association study (GWAS) identified several putative genetic associations with lower-canopy phyllotaxy in sorghum. This study demonstrates the potential of 3D reconstruction to enable both quantitative genetic investigation and breeding for phyllotaxy in sorghum and other grain crops with similar lant architectures.more » « lessFree, publicly-accessible full text available March 1, 2026
-
We introduce a novel method for reconstructing the 3D geometry of botanical trees from single photographs. Faithfully reconstructing a tree from single-view sensor data is a challenging and open problem because many possible 3D trees exist that fit the tree's shape observed from a single view. We address this challenge by defining a reconstruction pipeline based on three neural networks. The networks simultaneously mask out trees in input photographs, identify a tree's species, and obtain its 3D radial bounding volume - our novel 3D representation for botanical trees. Radial bounding volumes (RBV) are used to orchestrate a procedural model primed on learned parameters to grow a tree that matches the main branching structure and the overall shape of the captured tree. While the RBV allows us to faithfully reconstruct the main branching structure, we use the procedural model's morphological constraints to generate realistic branching for the tree crown. This constraints the number of solutions of tree models for a given photograph of a tree. We show that our method reconstructs various tree species even when the trees are captured in front of complex backgrounds. Moreover, although our neural networks have been trained on synthetic data with data augmentation, we show that our pipeline performs well for real tree photographs. We evaluate the reconstructed geometries with several metrics, including leaf area index and maximum radial tree distances.more » « less
An official website of the United States government
